

Instrumentation for Research, Programming and Evaluation

My Class Activities (Gentry \& Gable, 2001; Choi \& Gentry, 2007; Pereira, Peters, \& Gentry, 2009)
Student Perceptions of Classroom Quality
(Gentry \& Owen, 2004; Chae \& Gentry, 2009)
Teacher Observation Form—Revised
(Peters \& Gates, 2009)
Mathematical Perceptions Survey
(Mann, 2004)
HOPE Scale
(Gentry et al., 2008; Peters \& Gentry, 2009)

PURDUE
 My Class Activities

Presented by Nielsen Pereira Doctoral Candidate Purdue University

PURDUE
 My Class Activities

Pilot Study (1998) (EFA)
Confirmatory (CFA) \& Comparative Studies Creative Learning Press (2001)

- Translation and cross-cultural validation
- Measures $3^{\text {rd }}-8^{\text {th }}$ grade students' perceptions of
- Challenge
- Choice
- Interest
- Enjoyment

PURDUE \quad My Class Activities: Sample

Rural, Urban, Suburban

- 26 Schools in 7 States, 200 classrooms
- Elementary Schools (18)
- Middle Schools (8)
- Public schools, G/T magnet schools, Communication magnet school, Ethnically diverse sample
- 3744 students in grades 3-8

PURDUE
 My Class Activities

Resource Institu
Alpha reliability estimates $(\mathrm{n}=3744)$

- Elementary Range (.68-.91)
- Middle School Range (.75-.92)
- Test-Retest reliability estimates (.66-.74)
- Construct Interpretation
- CFA elementary: CFI .92, RMSEA . 04
- CFA middle sch.: CFI .88, RMSEA . 09
- IRT, definition and response scale

PURDUE

Wy Class Activities

A Survey Instrument to Assess Students' Perceptions of Interest, Challenge, Choice, and Enjoyment in Their Classrooms

Marcia Gentry, Ph.D. \&
Robert K. Gable, Ed.D.

My Class Activities:

 Enrichment Program Evaluation- MCA has been used for student program evaluation at Purdue University since 2004
- Conducting responsible evaluation is important both in general and gifted education (VanTasselBaska, 2006; Gallagher, 2006)
- Importance of evaluating an instrument on a new population before making decisions based on results (Joint Committee on Testing Practices, 2005)

Purdue Research Questions

1. How do MCA data from a Saturday student enrichment program fit the original factor model from Gentry and Gable (2001a)?
2. How do alternative models affect overall model fit?
3. What changes (if any) should be made to MCA to enable the instrument to be used with enrichment programs?
4. Can the $M C A$, in its current or a revised form, be used as one component to evaluate enrichment programs?

PURDUE
 Participants

1,065 students in grades 3-8 from 107 classes in a Saturday enrichment program (seven sessions between 2004 and 2008). $N=826$ cases after listwise deletion.

- Students from rural, suburban, and urban locations
- 51% female and 49% male

PURDUE
 Data Analysis

Confirmatory Factor analyses using MPlus Software

- Maximum likelihood estimation: ordinal, moderately non-normal data (skewness <2; kurtosis <7) (Finney \& DiStefano, 2006)
- Test different models based on theory and previous studies
- Modifications to the instrument based on previous studies and modification indices for the present sample

$\underset{\text { PURDUE }}{\text { PNTVITNT }}$
 Fit Statistics

Chi-square: Absolute fit index

- GFI: values approaching 1.0 indicate good fit
- Root Mean Square Error of Approximation (RMSEA): Parsimony Correction - <. 01
- Comparative Fit Index (CFI) : Incremental fit index - values approaching 1.0 indicate good model fit

PURDUE Results - Model Fit

Model	$\left.x^{2}(d f)\right)$	GFI	RMSEA	RMSEA 90\% CL	CFI
MCA Original Model	1726.6960 (428)	0.8620	0.0606	$(0.0577,0.0636)$	0.893
				$(0.0665,0.0724)$	0.885
Second-order Model	2145.5155 (429)	0.8485	0.0694		
				$(0.0654,0.0712)$	0.864
Three-factor Model	2089.6308 (431)	0.8304	0.0683		

PURDUE My Class Activities: Korean Version

Translationed MCA into Korean

- 648 Korean students in grades 3-6
- Four schools in Korea
- Gifted and non-gifted students
- Interest and Enjoyment combined into Appeal
- Purpose: to verify the validity and reliability of the Korean MCA

PURDUE Korean MCA: Translation Procedures

Korean-English
2. Feedback from Korean students
3. Pilot test (2 students)
4. Translation back into English
5. Congruence of two versions by experts of gifted education
6. Removal of items with congruence scores below 3 (on a 4-point scale)

Purdue MCA, Korean Version: Psychometric Properties

- Alpha Reliability Estimates ($n=648$)

Appeal: . 93
Challenge: . 76
Choice: . 84

- CFI: .91; RMSEA: . 036

PURDUE MCA: Conclusions

Resource Institute
MCA can be used for evaluation and research in both in-school and out-ofschool programs

- Original four factors should be retained in the English version.
- A revised version (removing 2 items of the Challenge scale) provided even better model fit for use in out-of-school programs.
- Korean MCA measures three constructs (Appeal, Challenge, Choice)

PURDUE Student Perceptions of Classroom Quality

Presented by Marcia Gentry, Ph.D. Director, GERI Purdue University for YooJung Chae, Ph.D. 2009 Purdue University

PURDUE Student Perceptions of Classroom Quality

Pilot Study (JSGE, 2002)
Confirmatory Study (2002)
Completing Test/Retest reliability
Measures grade 7-12 student perceptions of:

- Appeal,
- Challenge,
- Choice,
- Meaningfulness,
- Academic Self-Efficacy

Purdue Student Perceptions of Classroom Quality: Sample

- Rural, Urban, Suburban
- 26 Schools in 7 States \& 1 Foreign Country
- Middle Schools (12)
- High Schools (14)
- Prep School, G/T magnet, Vocational Center, Overseas American School
- 7411 students in grades 7-12

PURDUE Student Perceptions of Classroom Quality

- Alpha reliability estimates ($n=7411$)
- Appeal (.85)
- Challenge (.81)
- Choice (.81)
- Meaningfulness (.80)
- Academic Self-Efficacy (.82)

PURDUE Student Perceptions of Classroom Quality

Construct Interpretation

- CFA: CFI .997, RMSEA . 051 (. 90 CL=.048-.055)
- CFA: using randomly generated item parcels for each construct (loadings range from .71-.90)

PURDUE
 CFA Model

| Side 2 |
| :--- | ${ }^{01021}$

PURDUE

SPOCQ: Korean Validation Study

Gifted and General High School Students' Perceptions of Classroom Quality in Korea and the United States

Yoojung Chae

Research Questions

1.Do the original English version of the SPOCQ and the Korean version of the SPOCQ have equivalent constructs?
2.Are there differences in perceptions of classroom quality between gifted high school students and general high school students in Korea and the U.S.?

Purdue Korean Participants

-221 Korean gifted students
-128 students from one foreign language high school in Seoul and 93 students from one Science Academy in Busan

- 220 students from two general high schools in Seoul and one general high school in Ku-mi- Previous study sample

PURDUE
 US Participants

From SPOCQ validation study in 7 states
(Gentry \& Owen, 2004)

- 1,141 gifted students in advanced, AP, or honors classes
$-2,510$ students in general classes
-Randomly selected from the SPOCQ
validation study sample
-221 gifted and 220 general students, 10th-
11th students only

Instrumentation: SPOCQ

The original SPOCQ instrument (Gentry \& Owen, 2004)
-5 factors with 34 items: appeal (7 items), challenge (7 items), choice (7 items), meaningfulness (5 items), and academic selfefficacy (8 items) using a 5 -point Likert scale of 5 strongly agree to 1 strongly disagree.
-Translated into Korean, back-translated, rechecked (Chae \& Gentry, 2007)

PURDUE
 Analyses

- Confirmatory factor analysis (CFA) and Multiple group confirmatory factor analysis (MCFA)
-Missing data- multiple imputation for randomly missing data (Schafer and Graham, 2002)
-Checking univariate skewness and kurtosis of variables : at least under 2 and under 7 respectively (Curran, West, \& Finch, 1996)
-Normal distribution- maximum likelihood (ML) estimation following Finney and DiStefano (2006).
-Invariance investigation
- Factor invariance check : 5 factor Baseline model
- Factor loadings (pattern coefficients) check
- Error variances check

PURDUE Internal Alpha Reliability Estimates

Appeal . 86
Challenge . 79
Choice . 86
Meaningfulness . 84
Academic Self-Efficacy .85
Good internal consistency estimates (Gable \& Wolf, 1993)

Confirmatory Factor Analysis

Acceptable fit to both the Korean data ($x^{2}=2065.38, p<.001, d f=454$; RMSEA =.091; NNFI = .94; CFI = .94)
and to the U.S. data $\left(x^{2}=2566.03, p<.001, d f=454\right.$; RMSEA $=.011$; $\mathrm{NNFI}=.93 ; \mathrm{CFI}=.93$)

All of the factor loadings were greater than . 40

PURDUE
 Multiple-group CFA

-Baseline model for factor loading invariance (Model1)
-A five factor model including Appeal, Challenge, Choice, Meaningfulness, and Academic Self-Efficacy.

The acceptable five factor model fit (x2 = 4629.92, $d f=908, p<.001$, RMSEA $=.099$, $\mathrm{NNFI}=.94, \mathrm{CFI}=.93)$

- Constrained all variables equally on factor structure and factor loadings across groups (Model 2): to examine factor loading invariance across groups
->The chi-square difference test between Model 1 and Model 2 indicated that factor loadings (pattern coefficients) were not invariant across groups (X2 difference (27) = 167.06, $p<.001$).

Identification of the variables that affected non-invariance across groups

Each factor loading (lambda parameter) of the 32 variables was examined independently

7 items were not invariant

"The assigned reading material for my class is interesting" (Appeal)
"I find the reading material for my class a pleasure to read" (Appeal)
"My teacher lets me choose the resources I use for projects" (Choice)
"I am given lots of choices in my class" (Choice) "I can relate the material discussed in my class to my daily life" (Meaningfulness)
"I am good at connecting material from this class with the real world" (Academic SelfEfficacy)
"I can express my opinions clearly in this class"

- The chi-difference test for investigating error variance invariance across groups showed that the error variance (X 2 difference $(5)=258.864, p<.001$) was non-invariant.
- A follow-up test to examine the problematic items showed that all 32 variables were non-invariant across groups.
- In conclusion, partial invariance existed between Korean and U.S. groups

Resource Institute
Research Question 2

2 X 2 MANOVA (Nationality x Giftedness)

- Differences between Korean and U.S. students, differences between gifted and general students, and interaction effects between nationality and giftedness.

2) Follow-up simple effect tests

- Gifted students' perceptions: different in each nationality group.
- General student perceptions: different in each nationality group.
- Korean students' perceptions: different in each gifted/general group.
- U.S. students' perceptions: different in each gifted and general group.

3) Follow-up DFA

- Giftedness: Challenge, Meaningfulness, and Choice.
- Nationality: Appeal, Choice, and Meaningfulness
- DFA predicted the 63.7% of the gifted group and 57.5% of the general group correctly.
- The predictions for nationality were good: 85.9% of the U.S. group and 80.3% of the Korean group membership were classified correctly.

Conclusions

- The U.S. and the Korean SPOCQ: Same constructs; good to use for cross-cultural study
- U.S. students and the gifted group had higher scores on the SPOCQ scale
- Both Korean and U.S. students need more enjoyment and interest in class; with means ranging from 3.14 and 3.30 on a 5-point scale.

Kim et al. (2006)- Need more interest Gentry, Gable, \& Rizza (2002)- $8^{\text {th }}$ graders, MCA, Enjoyment and Interest

- Meaningfulness and Choice: Moderate predictor of giftedness
- Different result from the findings of Gentry and Owen (2004); in this current study, gifted students' higher mean scores on the Choice factor.
-> Due to the Korean sample?

PURDUE Teacher Observation Form—Revised

Presented by Jillian Gates

Doctoral Candidate

 Purdue UniversityPaper by Scott Peters Ph.D.
University of Wisconsin, Whitewater and Jillian Gates

PURDUE What is the TOF?

- The Purdue Teacher Observation Form (TOF) has been used to provide feedback to instructors of the Gifted Education Resource Institute's (GERI) Talent Development Programs for over 25 years.

PURDUE The Research

- Replication of previous reliability and content validity investigations.
- Previous studies sought to identify the most important characteristics of a quality gifted education classroom and develop an observation form.
- They also sought feedback from experts in the field and conducted measures of internal consistency reliability.

PURDUE
 Development and Use

- The TOF originally was developed in the late 1970s in order to evaluate the teachers of the Purdue Super Saturday Program.
- The TOF was conceptualized by creating a broad list of competencies from the literature that were seen as important in teachers of gifted students.

PURDUE Pevelopment and Use (2)

- The first TOF included items such as "Higher level thinking skills used" and "Chance for self-determination of work" and were rated by observers on a five-point scale (outstanding to not satisfactory), plus a "not observed" category .

PURDUE

Updates and Revisions

- The TOF was used for approximately 25 years with no noticeable changes or revisions.
- However, in early 2007 the authors noticed that several of the TOF items no longer seemed appropriate, or that they required some clarification.

PURDUE
 Updates and Revisions

- 15 experts in gifted education were given the 12 original items and asked to evaluate them for importance of inclusion in the instrument and for clarity of language.
- These data informed the authors in revising the Form's content and language.

	Importance		Clarity	
Areas of Teacher Competence	Mean	Std Dev.	Mean	Std Dev.
Subject matter coverage	4.400	0.737	4.286	0.825
Clarity of teaching	4.467	0.640	4.143	0.770
Motivational techniques	4.286	0.726	4.286	0.825
Pace of instruction	4.600	0.828	4.000	0.877
Opportunity for self-determination of activities by student	4.533	0.743	4.462	0.877
Student involvement in a variety of experiences	4.333	0.724	4.500	0.650
Interaction between teacher and student, student and peers, appropriate to course objectives	4.133	0.915	4.071	0.997
Opportunity for student to follow-through of activities outside of class (homework)	3.133	1.187	4.143	0.770
Emphasis on higher-level thinking skills	4.786	0.426	4.214	0.802
Emphasis on creativity	4.467	0.640	4.143	0.949
Lesson plans designed to meet program, course, and daily objectives	3.600	0.910	3.929	1.072
Use of teaching and learning aids	3.467	0.915	4.786	0.579

PURDUE
 Updates and Revisions

- In addition to rating each item according to importance and clarity, experts provided comments about the instrument that helped to inform the authors in the revision process.

PURDUE

Quotes

- "In regards to the use of teaching and learning aids) Use of technology that advances what students already know - 21st century skills"
- "Add interdisciplinary items to subject matter and rename category as content "
- "Topics of instruction are related to other subjects / content areas."

PURDUE
 U N I V E R S I T Y
 Changes Made

Behaviors and Classroom Conditions Observed

Behaviors and Classroom Conditions Observed	
Original TOF Sections	Revised TOF Sections
Subject matter coverage	Content coverage
Clarity of teaching	Clarity of instruction
Motivational techniques	Motivational techniques
Pace of instruction	Pedagogy / Instructional techniques
Opportunity for self-determination of activities	Opportunity for self-determination of activities
by student	by student
Student involvement in a variety of experiences	Student involvement in a variety of experiences
Interaction between teacher and student, student	Interaction between teacher and student, student
and peers, appropriate to course objectives	and peers
Opportunity for student follow-through of	Opportunity for student follow-up on activities
activities outside class (homework)	and topics on their own
Emphasis on higher-level thinking skills	Emphasis on higher-level thinking skills
Emphasis on creativity	Emphasis on creativity

PURDUE Mathematical Perceptions Survey

Presented by Rebecca L. Mann, Ph.D. Co-Director, GERI Purdue University

Mathematical Perceptions: Teacher Efficacy, Attitudes, and Performance

Rebecca L. Mann
Assistant Professor of Educational Studies Co- Director of the Gifted Education Resource Institute

Why do we study mathematics in school?

"Because my teacher could get sued if we don't. That's what she said. Any subject we don't know...wham!
She gets sued.
And she's already poor."
(Why do we study math in school?, 1997)

PURDUE Ptatement of the problem

0.9% of Bachelor degrees awarded in the US in 2000-2001 were in mathematics.
49% of math \& 53% of engineering doctorates in 1994 in the US earned by foreign students.

81% of $4^{\text {th }}$ graders and 35% of $8^{\text {th }}$ graders in US have positive attitudes about math.

Background

- Attitude - attitude effects teaching and classroom behavior (Phillipou \& Christou, 1998)
- Performance - teacher content knowledge is essential factor of effective teacher (Daring-Hammond, 2000)
- Content Efficacy - self-efficacy judgment should be consistent with and tailored to the domain of functioning (Pajares, 1996)
- Teaching Efficacy - Belief about own teaching ability, belief that one can influence students achievement and engagement (Lin \& Tsai, 1999)

PURDUE
 Purpose

To validate results from an instrument designed to measure:

- Ability to do basic elementary mathematics - performance
- Confidence in teaching the specific concept being assessed - content efficacy
- Teacher efficacy in general mathematics instruction - instructional efficacy
- Attitudes toward school mathematics attitudes

Research Question

What are the psychometric properties of Mathematical Perceptions?

Instrument Development

Literature review related to teaching elementary mathematics

- Attitudes (Cornell, 1999; Gellert, 1999; Phillipou \& Christou, 1998; Sliva \& Roddick, 2002)
- Efficacy (Bandura, 1997; Pajares \& Schunk, 2001; Lin \& Tsai, 1999; Tschannen-Moran, Woolfolk-Hoy, \& Hoy, 1998).
- Performance (NCTM, 2000; Kahan, Cooper, \& Bethea, 2003; Ma, 1999)

PURDUE
 Part I - Attitudes

Sample Statements

- I have confidence I can do math.
- I view math as a roadblock I cannot get past.
- I saw a purpose in taking high school math classes.
- I dread being asked to do a math problem.
- I had a fear of math during school.

Format

- Six-point Likert type scale $(1=$ strongly disagree, $6=$ strongly agree $)$

Content Validity

- 22 original statements
- Reviewed by panel of 8 content experts
- Researchers narrowed field and retained 10 statements

Part II - Performance \& Content Efficacy

- 14 problems based on the NCTM Strands and Connecticut $5^{\text {th }}$ grade standards
- Number
- Algebra
- Geometry
- Measurement
- Data Analysis and Probability
- Participants solved each problem, then rated their comfort in teaching that concept on a 6 point scale.
- "I would be comfortable teaching this concept to students" - Never to Always

PURDUE
 Sample Problem

Danielle is going to put a wallpaper border around her room. Her room is 11 feet long and 9 feet wide. If trim costs $\$ 3.00$ for each foot, how much will it cost her in all?

PURDUE Part III - Instructional Efficacy

Sample Statements

- I will be able to adjust the level of difficulty of my lessons to meet the needs of individual students in my math class.
- I will be able to rephrase a question or provide an alternative explanation when my students do not understand.
- If a student were to grasp a concept quickly, it may be a result of my effective teaching strategies.
- If a student did not grasp a concept presented in a previous lesson, I have the ability to reteach the concept in a way that will increase his or her retention.

Format

- Six-point Likert type scale $(1=$ strongly disagree, $6=$ strongly agree $)$

Content Validity

- 10 original statements, all retained
- Reviewed by panel of 8 content experts

Sample

- Midwestern elementary teacher candidates near the end of their coursework
- $N=267$
- 78\% female, 16% male, \& 6\% unknown
- 93\% Caucasian, 3\% African-American, 2\% Hispanic, and 2\% unknown

PURDUE
 Factor Analysis

- Part I - Attitudes
- 2 factors
- Statements \#2 and \#9 load on factor 2
- \#2. I view math as a challenge to be undertaken.
- \#9. I had to work hard in math.
- Part II - Content Efficacy
- 1 factor
- Part III - Teaching Efficacy
-1 factor

PURDUE
 Reliability

- Part I - Attitude
- Cronbach's Alpha $=.82$
- Without statements 2 and $9=.90$
- Part II - Content Efficacy
- Cronbach' Alpha = . 96
- Part III - Teaching Efficacy
- Cronbach's Alpha = . 93

PURDUE
 Implications

- Mathematical Perceptions could prove useful to gauge teacher candidate attitudes, content efficacy, and teaching efficacy about elementary mathematics

PURDUE The HOPE Teacher Rating Scale

Presented by Marcia Gentry, Ph.D. Director, GERI Purdue University
Paper by Scott Peters, Ph.D. University of Wisconsin, Whitewater and Marcia Gentry

Involving Teachers in the Gifted and Talented Identification Process: The HOPE Teacher Rating Scale

Scott J. Peters Marcia Gentry

PURDUE \quad The Problem

30 of 43 states responding in the State of the States report indicated that the GT identification process was initiated after a teacher or parent referral

- Despite advances in psychological testing, much of the ID decision often falls on one teacher or on specific gatekeepers' shoulders

PuRDUE Why Involve Teachers?

"The use of teacher judgments in the identification of gifted children should be continued, and, in fact, expanded" (Hodge \& Cudmore, 1986)

- Teachers can notice non-traditional talents that are often culture-specific and not measured by standardized tests (Peterson \& Margolin, 1999)

PuRDUE Why Involve Teachers?

Rating scales can help lend structure to a component of the ID process that is otherwise very subjective

- Can help teachers avoid bias for or against certain genders, races, ethnicities, or income groups
- Can allow for students to be compared across raters

Purdue Current Teacher Rating Scales

The vast majority have no psychometric properties and were at best haphazardly designed (e.g., KOI, TABS, KTII)
-
Even the best designed and researched rating scales have not been evaluated for group equivalence (e.g., SRBCSS, GRS, GES, GATES)

- None have been specifically designed with a focus on use to identify low-income students

PURDUE
 The HOPE Scale

Items include behaviors most easily noticeable in underrepresented students

- Only includes 12 items making it easy to complete on a classroom of students
- Asks rater to rate each student as compared to others of similar background and experience in order to create a specific norm / comparison group

PURDUE Evaluation

- The HOPE Scale has been:
- Completed by approximately 420 teachers on 7700 students from Indiana and Illinois
- Subjected to EFA and multiple rounds of CFA on the different revisions
- Evaluated for income, gender, and race / ethnicity group differences
- Evaluated for the level of teacher influence

PURDUE
 Results

Students should only be compared within their income group, but can also be compared across racial / ethnic groups Differential item functioning was found due to gender - gender comparisons should be avoided

- Teacher-level effects were small
(i.e., .13-.15)

$\underset{\text { PURDUE }}{\text { PNTVEITN }}$
 Application

The HOPE Scale can be included as one component / pathway in an identification process

- Students within major subgroups can be compared in order to determine those who might benefit most from special programming

PURDUE HOPE Scale: Academic Scale

1. Performs or shows potential for performing at remarkably high levels.
2. Is eager to explore new concepts.
3. Exhibits intellectual intensity.
4. Uses alternative processes.
5. Thinks "outside the box."
6. Has intense interests.

Internal consistency reliability estimate: . 96

PURDUE HOPE Scale: Social Scale

2. Is sensitive to larger or deeper issues of human concern.
3. Is self-aware.
4. Shows compassion for others.
5. Is a leader within his/her group of peers.
6. Effectively interacts with adults or older students.

Internal consistency reliability estimate: . 92
Date of Birth: \quad Age: \quad Sex: \square Male \square Female \square Free/Reduced LunchAmerican Indian/Alaska Native \square Asian \square Black or African AmericanWhite
\square Native Hawaiian or Other Pacific IslanderMixed RaceHispanic / Latino/a

When rating students on each item below please think about the student compared to other children similar in age, experience, and/or environment.
Use the following scale to indicate how frequently you observe the traits and behaviors listed in items $1-11$.

6 =always 5 =almost always $4=$ often 3 =sometimes	2 = rarely 1		1 = never			
	6	5	4	3	2	1
1. Performs or shows potential for performing at remarkably high levels.						
2. Is sensitive to larger or deeper issues of human concern.						
3. Is self-aware.						
4. Shows compassion for others.						
5. Is a leader within his/her group of peers.						
6. Is eager to explore new concepts.						
7. Exhibits intellectual intensity.						
8. Effectively interacts with adults or older students.						
9. Uses alternative processes.						
10. Thinks "outside the box."						
11. Has intense interests.						
12. Please indicate all content areas where the student shows talent. Math Reading Creative Writing Soc Science Foreign Language Arts Oth						

Please provide additional information concerning this child's potential:

Gifted Education
Resource Institute

Questions/Discussion?

